CS 4530: Fundamentals of Software Engineering
Module 7.1: Software Development Processes

Jon Bell, Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2024 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* At the end of this lesson, you should be able to

e Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development

Review:
How to make sure we are building the right thing

LIGLL

How the customer How the project How the analyst Huwﬂupmnrm Whmmummnﬂ
explainened it. leader understood it. designed it.
Requirements Planning &

Implementation

Analysis Design

Software Process: Code + Fix

Build First
Version

| Modify until - - - - -
!

Customer satisfied

l
I—» Operations

!

Retirement

A brief history of software planning

NATO conference on Software Engineering + Outcomes

® Software was very inefficient

® Software was of low quality SOFTWARE ENGINEERING
® Software often did not meet requirements

®Projects were unmanageable and code difficult to maintain

® Software was never delivered

Report on a conference sponsored by the

. NATO SCIENCE COMMITTEE A Ca" to aCtIOI’]I We
Garmisch, Germany, 7th to 11th October 1968
must study how to
build software

Chairman: Professor Dr. F. L. Baver

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969

Software Process: Waterfall (~1970)

Requirements systematic, sequential approach
Validate . Quality Assurance at each phase before
Design continuing
Verify -

Implementation

Test _

Y

Operations

!
Retirement

Waterfall Model: Risk Assumptions

The cost to fix a defect grows exponentially with each development phase

Relative Cost to Fix Defect

Communication Planning Modeling Cosntruction Deployment

Waterfall Process Improves on Code + Fix

Requirements

Validate

Design

Verify

* Measurable progress with risk contained in each
phase

* Possible to estimate each phase based on past
projects

* Division of labor: Natural segmentation between
phases

Implementation

Test

Operations

v

Retirement

Waterfall Model
adds process
overhead

Since formal quality assurance
happens at each phase, it’s
necessary to produce extremely
detailed...

* Requirements documents
* Design documents

e Source code with
documentation

Waterfall Model
educes Risk by
reventing
hange

Traditional waterfall model: no way
to go back “up”

Waterfall Model: Applications

* What projects would this work well in?
* Projects with tremendous uncertainty
* Projects with long time-to-market

Projects that need extensive QA of requirements
and design

Projects for which the expense of the planning is
worth it

Classic examples: military/defense

Relative Cost to Fix Defect

* Warship that needs to have component interfaces last 80 s

years
» Spacecraft?

Waterfall Model: Wasted Work Product

* Wasted productivity can occur through each
phase’s QA process:
* Requirements that become obsolete
* Elaborate architectural designs never used

* Code that sits around not integrated and tested in
production environment, eventually discarded

* Documentation produced per requirements, but

Relative Cost to Fix Defect

never read CHFC A ST
. . . .\'23& Q ¥ & &
* What if we could eliminate that waste, and S &
. Q C Q
reduce the cost of defects later in S

development cycle?
* Example: with shorter time-to-market?

12

Waterfall Variation: Iterative Process (~1980s)

Initial Concept —I

Requirements |~ T Next Iteration
and Iteration . ¥
Planning Design and . .
Implement Acceptance
Testing
and Delivery

Operations

13

The Agile Model Reduces Risk by Embracing
Change (~2000)

* The Waterfall philosophy:

* "The project is too large and complex, and it will take
months (or years!) to plan, so once we come up with the
plan, that plan can not change"

* Reduce risk by proceeding in stages
* The Agile philosophy:

* The project is too large and complex, it is unlikely that
we will know exactly what we need right now, and to
some extent, we are inventing something new. We think
that as we make it, we will figure it out as we go”

* Reduce risk by limiting time on any one stage; then
reassess. (“time-boxing”)

14

Agile Empowers Workers to Improve Processes:
Toyota Production System (1990’s)

Warning: Agile can be a buzzword

De Io Itte " The Agile Landscape v3 Developed by Christopher Webb

Management 1.0
O O 0 € C)jpemiC)

Qe O-——O O O
wsom fxed Sofware | Hybeid - Prod
g ‘L‘()‘C

SCsof 3 Levals Porfoio WSIF Agh
Agle Ponfolio, Backlog patfolio
Mgmt Program,

ART

SAFe Pragram
Budget

Patterns Planning

Marshall 4 Mindsets Tum Delegation Kudos Meddiers Moving
Maodel upthe Poker Cards (cha Motivators
good card game) deswes

Organise Top down Feature Scrum imgrovement F e
by + Botton team M Product of Service Tea’“s Qr-os:ec -
oustomer Up adopt Owner Scrums Schneider heory X vs.

Potentially

eadership i
value mag s coaching (00, oM. 160 Shippabie S Culure ThetryY

per
- 3 T Madel
| Large Enterprise s SR e T
led Scrum (Le e 3 P T ———

Comtract

Mutti-2eam Vision Casual 5 Dysfunctions of tearr 1
desion Page Game ot Loop Vinm O - ® e O, (O ()) O
workshop Grams Chagrams vistle Misimem ADKAR Survey § Toc Poisson PlantTypes Team Improvement EQRIORRON s oo o
Product Viagle Change [rinking| Cumulative BNFE CATA Days " sperrics Sigma
-"ro,r:;o MVP) EDBY jnspections
(Ot Chaee System NFR O il 5,
" " Overview
cdeestan i)
L :;;;._.nﬂﬁy] ig:‘x‘jca‘l.‘lfm O page Object ML Domain nnzm Kaizen POCA,
(Framevork fameworkl comee—l REQuirement fﬂg‘ﬂ"ﬁ' Diagram E‘f;ﬁ i itz (Deming cyde)
precedes dats) Area L) o <; Theory of ko
9] e) . Foanwe ndn Constrainis O O ® kanban | ®, O
gt umt WP) Visual waste 3 bin Make : Lead
& wail time

tng e Polici
g syt 7:3] yred]

Implement Evohe
feediback experimen

dypatf 4 n Vodeo!
dieme iraggiog | Cusor sk
O o—g e ®

Deciion Product Persomas! Rules
. Tree Vision Simnplic

Stery
Wapging) canvan boaa

Low
Siegelity
Protatypes Clustering

. . Lgal, horizon
el Comten Relational T

wapding () v.xmf Maf..-c eXtreme Programmi O

BLeveisof JTModel Sipoie CRC Cards Sustadable Metaphor Spikes
change Empaty() Panning Storming Defign Pade
Carwas daos

Ocm nucus

Producticn

O Auto-scale & Heal

0% (COrmbines

-'X‘"f.n on of Ready

Top 5 (deas)

Feature Toggling
O resture Togging

Mapging O
Card sort =S maall
releases

Review

9 s o OO}&&, OF iphaan
MaSCaW

Design
Brinciples { YHackahon ; ﬁqgc;f:[.ﬁ?‘p
LA Barmal 3 A
J / Snit
: g I g VI g, V— g, W ince i5Tve € Ol) / . O Release
Five E' estimates i Train
‘:’(Guided [sk’ﬂc Faciltned Doblin's 10 I)r.eom‘on' A - Engineer
Tour Suctess workshops t}neic aporoad ’ gk
el o oo Ny cuspoes : 38 Relese or
wrol Pac e acloning e 1 bond
ic Systern Development Method (DSDM) el aicrd Map Sonnt Automation il A mr'ucn-d Hengnd
‘ B

Carlo

O e Qe el) 59

O O.\.,L'--ra-z-r visu

dashboard

ion

Requiremenits Architeciute ependent Version arpefact Standardisedintegrated
O O . Goal Nawely g
Update when User -
T cosy, i T
v Auternated Test
O O O oo
Carnatic Incremeraal Focus Scale Wallong Information Exploratony
Communicaon Re-architecture § Period methed by Skeleton estmation Radistors 360 degree Al
(2he) -

Mock Clects

er

Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

https://agilemanifesto.org

17

Agile Practice: Everyone is Responsible for
Quality

* “Collective ownership”

* Requirements (user stories) are developed collaboratively with
customer, and are negotiable (INVEST qualities)

* Functional and non-functional correctness is checked on the cheap,
and often

* Developers improve code anywhere in the system if they see the
opportunity

* Many parallels with “Toyota Process System;” a variety of other
software processes developed in the 90’s share these basic values

18

Agile Values Embrace Change

Compare to problems in waterfall:

* Requirements that become obsolete
* Don’t make detailed requirements until you need them

* Elaborate architectural designs never used
e Don’t design until you need

* Code that sits around not integrated and tested in production
environment, eventually discarded

* Integrate and test continuously
* Documentation produced per requirements, but never read

* Don’t require documentation
Or only as much documentation
as you really need.

19

Agile Processes are Iterative

Agile Process Model

Initial Concept _l
Iterative Waterfall Model

Requirements
and Iteration
Planning

Design and
Implement

Next Iteration

2

Key Idea: Small Continuous Releases

Acceptance

Testing

and Delivery

Y

Operations

20

Agile Processes Reduce Risk by Time Boxing

* Each “iteration” is called a “sprint”

: : . Time Box Time Box
* Each sprint has a fixed duration Istiteration 2nd Iteration

Scope Scope

* Scope of features in a sprint is determined
by the team

* Key insight: planning might be a guess at
first, but gets better with time

* More on agile planning & estimation in
Module 7.2

21

Example Agile Process: XP

"The development of a piece of software changes its own
requirements. As soon as the customers see the first release,
they learn what they want in the second release...or what they
really wanted in the first. And it's valuable learning, because it
couldn't have possibly taken place based on speculation. It is
learning that can only come from experience. But customers
can't get there alone. They need people who can program, not
as guides, but as companions.”

- Kent Beck, in “eXtreme
Programming eXplained”

Agile Practice: Test Driven Development
(TDD)

User story &
{1. Start here] conditions of

The TDD Cycle (from Module 02)

Analyze Design Code
Satisfaction Testable : Executable
Conditions Behaviors) Tests

N =

Agile Practice: Code Review

* A code review is the process in which the author of
some code is asked to explain it to their peers:
 What purpose the code has;
 How the code accomplishes this purpose;

 How the author is confident of this information,
* E.g., show results of running tests (Cl results)

* A code review often concerns a code change
(“diff”)

SE Research Question: Why Do Code Review?

Ranked Motivations From Developers

Top] Second [Third N

|
| | []
Code Improvement | | _
Alternative Solutions | | _
|
|
|

Finding defects

Knowledge Transfer

Team Awareness

]
| []
Improving Dev Process -
Share Code Ownership El:-
Avoid Build Breaks | [| N
Track Rationale El:-
Team Assessment D:-
0 260 460 660
Responses

“Expectations, Outcomes, and Challenges of Modern Code Review”, Bacchelli & Bird, ICSE 2013

Learning Goals for this Lesson

* At the end of this lesson, you should be able to

e Know the basic characteristics of the waterfall software
process model

* Be able to explain when the waterfall model is
appropriate and when it is not

* Understand how the waterfall and agile models manage
risk

* Be able to explain how agile process instill quality,
including through test driven development

27

	CS 4530: Fundamentals of Software Engineering�Module 7.1: Software Development Processes
	Learning Goals for this Lesson
	Review:�How to make sure we are building the right thing
	Software Process: Code + Fix
	A brief history of software planning
	Software Process: Waterfall (~1970)
	Waterfall Model: Risk Assumptions
	Waterfall Process Improves on Code + Fix
	Waterfall Model adds process overhead
	Waterfall Model Reduces Risk by Preventing Change
	Waterfall Model: Applications
	Waterfall Model: Wasted Work Product
	Waterfall Variation: Iterative Process (~1980s)
	The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile Empowers Workers to Improve Processes: Toyota Production System (1990’s)
	Warning: Agile can be a buzzword
	Agile Manifesto
	Agile Practice: Everyone is Responsible for Quality
	Agile Values Embrace Change
	Agile Processes are Iterative
	Agile Processes Reduce Risk by Time Boxing
	Example Agile Process: XP
	Agile Practice: Test Driven Development (TDD)
	The TDD Cycle (from Module 02)
	Agile Practice: Code Review
	SE Research Question: Why Do Code Review?
	Learning Goals for this Lesson

